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where k (s) > k, > 0 is a piecewise-continuous function, k, is some constant, and 

Ha/, (y) is a Sobolev-Slobodetskii space. 
Note 2. Using the explicit form of the operator K we can obtain sufficient con- 

ditions for the uniqueness of the solution, can study the differential properties of the 

solutions, and can also give a foundation for the Bubnov-Galerkin method. 
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An asymptotic method using the presence of a natural small parameter (the 

relative wall-thinness) is applied to determine the state of stress and strain of 
shallow strictly convex shells of revolution subjected to an axisymmetric load. 
In particular, asymptotic values of the upper and lower critical shell buckling 
loads are deduced under diverse boundary conditions and loading methods. An 
example of a spherical shell under uniform external pressure is examined. In 
the case of rigid clamping of the edge, the known result is obtained in [l] for 
the upper critical pressure. The values found for the upper critical pressures 

of spherical shells are in good agreement with the results of numerical com- 
putations on an electronic computer @ - 133, and permit their continuation 
into the domain of arbitrarily thin shells where the machine computation is 
of low efficiency. 

1. On the formulation of the problem, A system of nonlinear differen- 

tial equations of axisymmetric deformation of shallow shells of revolution is considered 
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e2Av - l I& + eu = 0, eaAu + uv - ev + cp (r) = 0 (I.11 

A( ,=-&+$r( ), ‘p(r) = j q (t) tcit 
0 

8 
a2 f3W =- 
ar 3 u=ar, v==, aF (5 +}_(p 

with different boundary conditions on the contour 

1) v(1) = 0, 1 -$+pu],,=o 

2) v (1) = 0, u(1) = 0 (l-2) 
3) c-g- pv],, = 0, [$ i- pu],=,= 0 

4)[~-+v]~l=o, u(l)= 0 

All the quantities in (1. l), (1.2) are dimensionless and related to the dimensional quan- 
tities by means of the relationships 

2 = az, w = UW, E = Ur, E2 = h/U?, y2 = 12 (1 - y”) 

@ = Ea2E2F, p = EyE4q, 0 < -a2r, 0 ( v ( 0.5 

Here 2 is the middle surface of the shell of revolution, W is the deflection, @ is the 
Airy stress function, p is the intensity of the external load (the pressure) p ,> 0 and 

E is Young’s modulus. The small parameter a2 characterizes the relative wall-thinness 
of the shell, h is the thickness, 2: is the Poisson ratio. The direction g coincides with 
the direction of the exterior normal to the reference contour with radius n; CI = 
consi > 0. 

The boundary conditions 1 - 4 in (1.2) correspond to: (1) movable hinge support of 
the shell edge, (2) sliding clamped edge, (3) fixed hinge support, (4) absolutely clamp- 
ing of the edge. 

For the case of a spherical shell under uniform external pressure, the problems (1. l), 
(1.2) have been studied extensively in order to investigate the state of stress and strain, 
and to determine the critical pressures. However, for sufficiently low values of e2 = h I 
QT (or equivalently, for high values of H / h, where ti is the shell rise), the numerical 

methods applied converge weakly, and the machine computation is of low efficiency . 
Mathematically this results from the presence of the small parameter Ed in the highest 
derivatives in (1. l), and is explained from mechanics aspects by the fact that the edge 

effect phenomenon characterizing a sharp change in the stress resultants, moments, etc., 
originates in the neighborhood of the boundary (and in the operating zone of concentrated 
forces) of sufficiently thin shells. 

An asymptotic method D 5 - 181, based on the smallness of the parametet F , and be- 
coming the more exact the smaller the value of F , is developed herein for the investi- 

gation of the state of stress and strain of shallow shells of revolution. Asymptotic expan- 
sions for the functions of the II- and ~-solutions of problems (1.1) (1.2) are constructed, 
and simple formulas are also deduced for the asymptotic values of the upper and lower 
critical loads. 

Let us define the upper critical load. Let g Q (r. CJ) depend smoothly on some 
parameter o. which is determined by the behavior of the structure loading and which 



we shall call the load parameter. Let us assume that Q (r, oj = 0. It is well known 
that for small values of o a continuous branch of the solutions u (r, a) and u (r, 0) 
exists which is uniquely determined by the conditions 11 (r, 0) = u (r, 0) = 0. We 
call the greatest value of cr, for which the mentioned unique branch exists,the upper 

critical load o* of shell buckling. (Such a value o* . 1s usually called the least bifurca- 
tion point). In other words, o* ,is the least value of the parameter (5 for which another 

solution corresponding to a new equilibrium mode will appear in any sufficiently small 

neighborhood together with the main solution corresponding to the unbuckled equilibri- 

um mode [l]. 
The parameter o is introduceddifferently in different cases. In the case of positive 

pressure, which is considered herein, it is convenient to take a value proportional to an 

equivalent system of forces acting on the shell as o , i. e. o = 2~ (1). In the case of 

a uniformly distributed external pressure (q (r)sq = collst) , it is usually assumed 

that o = 4 l2 - 133. let us note that in the case of a sign-varying pressure, such an 
introduction of the parameter o is inconvenient, and it is meaningless in the case of a 

self-equilibrating load ( C# (1) = 0) . 
Let E y= 0. We then have from (1.1) 

--l/aU’~ + BU, = 0, Z1OZ’O - Bu, + cp (r) = 0 (1.3) 

The system (1.3) has two soIutions 

1) 1’” = cp0-1, u0 = 0, 

2) 1’0 = --‘cB-1, lLO = 20 (1.4) 

which satisfy Eqs. (1.1) to accuracy of &2 , but do not satisfy the boundary conditions 
(1.2). It is natural to expect that as E -+ 0 the problems (1. l), (1.2) have solutions 

which will behave just as (1.4) everywhere within the domain and will undergo strong 

changes such that boundary conditions (1.2) will be satisfied, only in the neighborhood 
of the point r = 1. These changes are described by functions of boundary layer type. 

2, Construction of the raymptotica. Asympotic expansions of the solu- 
tion of each of the problems (1. l), (1.2) are constructed for I + 0 as 

VmVC&i Ei[vi(r)+hi(r,i5)1, U~lL,=~ Ei[UiCr)+ gi(r,E)l (2.1) 
i=o i=O 

The functions ui and Ui are obtained by using a first iteration process analogously to 
Sect. 2 in 1171. We hence obtain a system (1.3) to determine vO and u,, , and the fol- 
lowing system to determine ui and ui (i > 1) 

(2.2) 
13U, - 2 UkZ4i $ AL~i_~ = 0, 2 ZLhVj - OU; + ALLi-, = 0 (U-1 = V-1 ZF 0) 

k+j =i k+j=i 

Asymptotic expansions are constructed in the neighborhood of the first solution (1.4) 

to find the solution corresponding to the equilibrium mode in the subcritical stage. The 
boundary layer functions hi and gi are concentrated in the neighborhood of the bound- 
ary r = 1. They describe the behavior of the shell in the edge effect zone and are 

sough? by using the second iteration process. Proceeding just as in [17], we obtain a sys- 

tem of nonlinear differential equations for h,and g, 

h{ -I- l/,2 g,’ - 8,g, = 0, g,” - gal!, + 8”11, - E g, = 0 (2.3) 
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()di&_l, Ff” = 0 (I), ‘PO = q?(i), t = A.--$ ) (/lo, g& 

with the boundary conditions corresponding to (1.2) 

1) 1310 (0) = ‘CoQo-rT g,’ (0) = 0, 

2) h, (0) -= q+po, go (0) = 0 

3) ho’ (0) = 0, go’ (0) = 0, 

4) h,’ (0) = 0, g, (0) = 0 

3 0 

(2.4~ 

Let us note that the bounda~~onditions at infini~ result from the requirement of decrea- 

sing boundary layer functions. 
We obtain systems of linear differential equations to determine hi and gi . In the 

case of boundary conditions 1 and 2 in (I,.Z), we have 

1) hi(O)= - ni iA gi’ (0) = [* -i_. VLJi_l] 
r==x i ygi-, (0) (2.6) 

2) hi (0) = - vi Jrml, gi (0) = - ui Jpq 

In the case of boundary conditions 3 and 4 in (1.2), it follows from (2.3). condition 3 in 
(2.4) and (2.3), condition 4 in (2.4) that ho = go zar 0. We then arrive at systems of 
linear differential equations with constant coefficients to determine hi and g, (i > 1) 

hi” - 6ogi = fil9 a” + f&hi - ggi = fit (2.7) 

with the conditions {hi, gi) + 0 as t -+ 00 and the boundary conditions for t = 0 

in the case 3 and 4 in (l-2), respectively 

1~~’ (0) = [+ - VU&1 ]-I - \‘hi_l (O), gi’ (0) = 

= 
C 

dll. 1-L 

dr 
-t YU&.y_ 

I 
r_-l + wi-I (0) (2.8) 

hi’ (0) = [f$- - VUi-1 Iti1 - vhi_1 (0), gi (0) = - % jr=1 

Here fil and fiz agree with I*‘i, and Fit , respectively, from (2.5) if ho = go E 0. 
is substituted in the latter. In particular, we find frl = fle = 0 for i = 1 , Then we 
obtain for the principal terms of h, and g, in (2.1) in cases 3 and 4 in (1.2), respect- 

ively 
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hl(%) =&tl (l+~)x+ b(l+$) YJ, 
= -& iax + bYI 

h,(+) =p[+x-2aby], g,(q) 

Here 
x = e+* sin b7, y=e-a~cosb~, Z= I-’ 

ev/--0 ’ 

B 
=-_X 

b (2.9) 

Q 2% =- 
eOa 

B = [- e,]‘/l [(q@-1)’ - yq@-l]r_l, 

Evidently (2.9) are valid only for ‘po < 2e,‘. 

3, Solution of the edge effect cqurtion (2.3). Making the s&mu- 
tion 

hi, = _&,h, go=-f&g, ‘Po=+$-,$ t=(----~#~ 

we obtain from (2.3), (2.4) 

$++gz+gsO, .$-gh-h+&=O, {h,&+O (3.1) 

with the boundary conditions 

1) hIrsw,= +, %I,,=0 

2) h IrrO = + , kT i+=o = 0 

We reduce the solution of the problem (3. l), (3.2) to the solution of two nonlinear alge- 

braic equations of infinite order by a method analogous to that elucidated (see fl], p. 
52). To do this we seek the solution in the form 

11= x amh.e*(m+k)~$“y*, g= zl brnke-a(m+k)sxm k Y 
ktm==l k+m==l 

x = sin bz, y = CQS bz, a=(q)‘“, b=(,q,)lh 

Substituting (3.3) into (3.1). and equating coefficients of xmyK to zero after 
reduced similar terms, we obtain a system of two equations to determine aOl, 

and b,, 
bol = -$- sol -I- 2aba,, , blo = -!$ alo _ 2abaol 

(3.3) 

having 

b 01, alo, 

(3.4) 

and a system of 2 (n + 1) linear algebraic equations to determine a,, k and b,, k 

(m + k = n; m > 0, k > 0, n > 2) : 

Amkam,r + Bmkamtl.k-1 + Cmkam-l,ktl+ Dmkam+2,k_2 + 
(3.5) 

+ Emtc%n_s, k+2 + bmk = -+,,,_xtt, 
8 = 

xb,tblP 

Amkbm,k + Bmkbm+l,k-l + Cmkbm-1, k+l f Dmkbm+Zvk-2 + 

-b Emkbm_2,k+2 -i- -$bmk -amk =,,_q+, 
, - 

k artbw 
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Here 

A mk=u2(m+k)2-b2(2km+m+k), B,k=-2ab(m+1)(m+k) 

c mk = -Bkm, Drn, = b2 (m i- 2) (m + I), Em, = b2 (k + 2) (k + 1) 

The system (3.5) is written in recurrent form and permits finding the unknowns Uij and 
b.. II whose subscripts satisfy the condition i + j = m + k if @i and bij with sub- 

scripts i + j ( m -j- k have already been found. We use the boundary conditions 
(3.2) to determine the unknowns a,, and a,,. Correspondingly, we obtain for cases 1 
and 2 by using (3.3) 

I) 2 
Q a,0 = -g-F a 2 kbok - b 2 blk = 0 (3.6) 

m-1 k=l k=a 

2) 2 amo = 4 7 2 bmo =O 

m=1 m=1 

Here amk and bij (m + k > 2, i + j > 1) are expressed in terms of a,, and alo 
successively by means of (3.4) and (3.5). Hence, (3.6) are a system of two nonlinear 
algebraic equations of infinite order in a,, and a,,. 

Let us seek the solution of problems (3. l), (3.2) by limiting ourselves to a finite num- 

ber of terms in the sums (3.3). which results in the solution of nonlinear equations of 
finite order. 

As ever in such cases, this number iv is selected from the principle of practical con- 
vergence. Equations (3.4) - (3.6) corresponding to the given value of iv , arc solved on 
an electronic computer by using an algorithm combining the method of continuation in 

the parameter (j and the Newton method. To do this (3.6) are written as 

For 0 = 0 the system (3.7) has the trivial solution aoi == uio 0. Let us set 

v = AC?. Then the zero solution is approximate if AQ is sufficiently small, and it is 

refined by the Newton method. Iteration is carried out for (, - A(, until a root is 
found with the given degree of accuracy. Afterwards, still another step is taken in Q 
and for v = ah<) the value obtained in the preceding stage is considered the approxi- 
mate value of the root, etc. On approaching the bifurcation point v* the derivative 
&z,, / a($ starts to grow strongly and then it is necessary to go over to motion on (lo1 

or a,,, which permits the detrmination of (P. 
A program in which automatic selection of the spacing associated with the number 

of iterations by the Newton method is provided, was compiled for the Odra-1204 elec- 

tronic computer by using the algorithm mentioned. The values ()* ().i!J;j in the 

case of boundary conditions 1 in (3.2) and <J* _ 1.7W in the case of 2 in (3.2) 

were found. (The next digits are not written down although the values of the roots were 

sought to 1W!’ accuracy for IL 1 ;i. The time required to obtain <)* was 20 minutes). 

The computations were checked in both cases by using the first integral 

which is obtained from (3.1) if the first equation is multiplied by I/‘, and the second by 

--g’, they are added and integrated between T and co. Assuming t 0, and taking 

account of (3.2), we find the verifying formulas corresponding to cases 1 and 2 from 



Ueterminlng the critical buckling loads of shells of revolution 671 

(3.3) 

1) I?? (0) + vg (0) = 0, 

2) h’2 (0) - g”” (0) = 0 (3.9) 

let us note that for the mentioned accuracy of the calculations in the neighborhood 

of q* the left sides of (3.9) yielded values between 2 x 10T5 and 5 x 10m6. 
Returning to the variables ‘pO and 8,, we obtain values corresponding to the least 

bifurcation points 
1) li 200 e ‘PO = 0.3965 02 (I), 

(3.10) 
2) ‘izoo 3 ‘PO = 0.883 82 (1) 

4. Asymptotic value of the upper critical lord. The result of Sect 
3 permits the asymptotic value of the upper critical load to be obtained at once in the 
case of a free edge support. This value can be refined if it is sought as a perturbation- 
theory series 

6* = 2C$I* (1) = 50 + &jl + . . . + En& + . . . 

We hence have for the corresponding function cp (r) 

20 = 2% (1) (4.1) 

(p* (r) = ‘po (r) + i;r (ES1 + E’S, + . . . -+ ErLSn + . . .) r2 

Then an additional member ‘/, oir2 will appear in the left side of Eq. (2.2) in con- 

structing the asymptotic expansions (2. l), on which all the subsequent functions of the 
iteration processes will depend, starting with the number i. The values oi (i > 1) 
are determined from the conditions for solvability of (2.6), (2.5). No numerical analy- 

sis is made here nor are terms sought for i > 1 in (2.1) and (4.1). 
Writing (3.10) and (4.1) in dimensional variables, we arrive at the following result. 

Let cp (r) 8-l (r) be a sufficiently smooth function for 0 < r < 1. Then for sufficie 
ently thin shells with free edge support, the values of the upper critical load fJTL* are 

determined from the formula 

pn* = 2 \I%* (E) WE = 
crnE/L’cI-%~(l) 

l/S (, _  v”) 11 + %E + a2nE2 + . . .I (4.2) 
. 
0 

n = 1,2, a, = 0.3965, u2 = 0.883, I-’ = Eh2~-‘a-W (1)s 

The subscripts n=l. 2 here correspond to boundary conditions 1 and 2 in (1.2). In 
the case of rigid clamping of the edge (boundary conditions 3 and 4 in (1.2)) the influ- 
ence of the edge effect is considerably weaker and the principal term of the asympto- 
tics in the edge effect zone is on the order of e. It is determined uniquely from (2.9) 
for cp (1) < 2e2 (1). For tp (1) == 2fI12 (1) , Eqs. (‘2.7) have no decreasing solutions 

and the conditions at infinity are not satisfied. 

In order to show that o,, = 2~ (1) = 4V (1) is an asymptotic value of the upper 

critical load in the case of rigid clamping of the shell edge, let us alter the process of 
constructing the asymptotics of Sect.2 in the edge-effect zone somewhat. Namely, let 
us retain the method of obtaining the equations as before, but let us satisfy the approp- 
riate boundary conditions exactly in each stage. This results in the determination of 
h, and g,, from the system (2.3) with the appropriate boundary conditions for the cases 
3 and 4 in (1.2) 



:j) 11,’ (0) + EdlO (0) == E /(([#--I)’ - vqY@-‘I,=,, go’ (0) - &vgo (0) = C) 

4) IJO’ (0) $ EVllo (0) = F [(JP)’ - Vq@‘]r=l, g, (0) = Cl (4.3) 

The problems(2.3) and (4.3) are solved exactly as in Sect. 3. The values of the least 
bifurcation points are obtained sufficiently close to 202 (1) and are the closer, the 
smaller the e. The method of constructing the next terms of the asymptotics is the same 
as in the case of a free edge support. Therefore, for sufficiently thin shells with rigid 

clamping of the edge, the values of the upper critical loading Pll* are determined from 

the formula t 

P”=2 11 - c 
(‘; 

pn” (E) &Q = a;= [ 1 + alnc $ a2,%E2 + . . . ] (4.4) 

(n = 3, 4. The coefficients ai, are not found here). 

5. A aphericrl Ihell under uniform sxternrl prea:ure. In this case 
we must set 

cp (r) = + qr2, 8 = - hr, h = $- , 
p = & q $ ( i 2 

in formulas from Sect. 2 - 4. We then obtain for the values of the upper critical buck- 
ling pressure p,,* of sufficiently thin shallow spherical shells from (4. i?), (4.4) 

Pn* = 
YIE ’ 

1/3 (1 - Y2) ( ) -X 
’ [1 + alne + azne2 + . . .] (5.1) 

n = 1,2,3,4; a, = 0.3965, ag = 0.883, aa = a4 = 2 

Here, as in Sect.4, the subscripts n = 1, 2, 3, 4 correspond to the boundary conditions 

1 - 4 in (1.2). Values of pn* calculated taking account of just the first member in(5.1) 
were compared with the results of the 

upper critical pressures obtained on digi- 

tal computers by various authors. The dis- 
crepancy did not exceed 7% for the least 

ValueS of the parmeter EL-’ s h (2l’ff)-’ 

presented in l-4, 121 for n = I,2 . Formula 

(5.1) in the case of boundary conditions 
3 and 4 in (1.2) was obtained earlier by 

a geometric method (see p] p. 145). This 

is a well-known result of linear theory, 
however it is stressed in p] that the for- 
mula must be applied for sufficiently thin 
shells. This result is verified for boundary 
conditions 4 in (1.2) by the results in [8] 

for 3.5~ 10-3 < El.-l< 5~ 10-3 (‘the values of the upper critical pressures for lesser ah-l 

are not presented). 
In the case of conditions 3 in (1. a), on the basis of the data known to the author lJ2], 

it is still not possible to assess the behavior of ps* for &h-l sn h (2yH)-1 > 7 x IO-3 as 
F + 0. For this case the values of the upper critical pressure for E < h/30 are less than 

the corresponding values of pi* , and in order to emerge on the asymptotics it is neces- 
sary to carry out computations for lower values of E. A dependence of the upper criti- 
cal pressure on the geometric shell parameters is presented in Fig.1 constructed by using 
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the results of [4, 8, 121 as well as (5.1). The support conditions 1 - 4 in (1.2) correspond 

to curves l-4 The value of the parameter p,, */ p. is laid off along the vertical axis, 
and the value of the parameter p along the horizontal axis, where 

2yH n”~ h 
p= h -=-x=-F, 

y2 = 12 (1 -Y”) 

Further, a rigorous proof of (5.1) is given for pa*. In this connection, let us first prove 

the following. 
Theorem. Let E + 0. Then for arbitrarily small 6 > 0 (6 = 0 (a)) , there 

is a value &i such that the dimensionless value of the upper critical pressure Q* satisfies 

the inequality Q* > 4h2 - 6 for 0 < E < &i in the problem. (1. l), 3 in (1.2). 
Hence, for all Q < 4h2 - 8 in the neighborhood of Q, U, from (2.1) there exists 
just one solution, and the estimates 

max,\u-~v,\<mE”, max,Iu-uUI(<:fP (5.2) 

(O<r&i, n=l,2,...) 

are valid. 
Proof. As follows from Sect. 2, the asymptotic expansion (2.1) can be represented 

in the case of the problem (1. l), 3 in (1.2), as 

9 
UE = -21, r +cs~ (r, e). u, = es2 (r, 8) (5.3) 

Sl (r, E) = i E*-1 (hi + Ui) + E'$, . 

i=l 
sz (r, E) = i Ei-l (gi -+ pi) + Encp, 

i=1 

Here hi and gi are defined in Sect.2, ui and fir are constructed exactly as in Sect.2 

of [17], and the sufficiently smooth arbitrary functions ‘pi (r) and qz (r) correspond to 
the single requirement that the right sides of (5.3) must satisfy the boundary conditions 

3 in (1.2) exactly. 

Let us first prove the validity of the asymptotic expansion for 9 < 4h2 - 6. To do 

this, let us use Theorem 4.2 in [ 183. The method of obtaining the a p r i or i estimates 

needed for compliance with the conditions of this theorem is analogous to [17]. Con- 

sidering the problem (l.l), 3 in (1.2) as a functional equation P (V) = 0, as in [17], 
we obtain the estimates 

It is somewhat more difficult to obtain the estimate 

IP;,,l-‘I) <w-4, 
9’ 

P;E(V)--(P?~l’-(es,+~r)u, &?AIL -~2h+“S2”+eslu ‘+hrl;( 

Here P;, is the Fre’chet derivative on the element V,. 
(5.5) 

Let us consider the system of equations 

Pi,(V) = f, f 3 (il. f?) 1 v f (u, u) (5.6) 

We multiply the first equation in (5.6) by (6,~ - u), and the second by 6,~ + U, where 
6, is some small positive number, and we integrate between zero and one and add. We 
consequently obtain 1 

61&’ 
U” TL.~~ + z + l.l,‘z -;_ _ dr + 

I r 



674 

(5.7) 

Let us note the following inequalities: 

e 1(dia2u~ -, 

1 

s 
SzuL' I- srV2 + slf(z‘) dr < 62 [ r (u2 + 29) dr 

0 6 

63 = 0 (e), 2u (1) u (1) < vz (1) + 112 (I), v2 (1) < a2 5 rv%r + (2 + ae2) i* rvVr (3.8) 

0 

The first two inequalities are evident, but the third follows from the chain of relation- 

ships 1 1 
~2 (1) = [r~) (r)]k, = 2 

s 

(r2v’1, j- rv2) dr < a3 
s 

r?v’?dr ..- 

0 0 

+&S 1 1 r2v2dr $ 2 
s 

rv2r < a2 
s 

rz”Vr + 

0 

(2 + &) 

r, 0 

1 rv% 

Now, setting a2 = i/2 ~‘~6, (1 $- 6J01’, we deduce from (5.7) using (5.8) 

p _ a6 _ e2 (1 + 6,) 2v - 2e2v2 (I f 81)‘3 SIC1 - $f-] 1 r (u” + v2) dr + 

0 

rdL + f + ,-u’2 -+ $) dr - _.$ l ’ mdr < VT II fld, II V IL, (5.9) 

0 

Let 6, = e and Q < 4L (L -- 2 KE), where K > 0 and 

& - &2 (1 + F) 2v - 2ev’ (1 + e)” - $ 
I 

< +- 

We then find the following estimates from (5.9) 

Hence, we have in the interval 0 < r < 1 

and the estimate (5.5) is obtained from (5.6). By using (5.4) and (5.5) we verify that 

all the conditions of Theorem 4.2 from [ 181 are satisfied if n > 7 and e is sufficientiy 

small. The estimates (5.2) are now proved by using the triangle inequality. 

Therefore, as e -+ Cl and p < 4h (h - 2 KE) there exists a solution of the problem 

(l.l), 3 from (1.2) for which the asymptotic expansions (5.3) are valid. Let us note that 

the L. V. Kantorovich theorem on the convergence of the Newton operator method, from 

which Theorem 4.2 from [18] has been obtained, assures the uniqueness of this solution 

in the neighborhood of (5.3). This latter results in the deduction that as s + 0 the 

value of the upper critical pressure is q* > 4h2 - 6, where 6 = 0 (e). The theorem 

is proved. 
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Furthermore, let us note that for Q f 4Az - 6, where 6 = 0 (E) as e - 0, the bound- 

ary values uE and U, from (5.3) and therefore the solution of the problem (1. l), 3 in 
(1.2) as well, tend, respectively, to the following values : 

(5.10) 

For any value of q the problem (1. l), (5.10) has the trivial solution U= --i/2 q r h-i, 

u=O corresponding to the membrane equilibrium mode. It has been shown in @O. 191 
that from one to three new solutions of the problem (1.1). (5.10) can appear in the left 
semicircle of the least eigenvalue of the corresponding linearized boundary value prob- 
lem (4h2 - p, y), where p is some small positive number. Therefore, Q* = 4h2 is a 

bifurcation point as E - 0. 

6. On the r#ymptotfc vrlue of the lower critical lord. To find 
the solution corresponding to the mirror buckled equilibrium mode, the asymptotic ex- 
pansions (2.1) are constructed in the neighborhood of the second solution of (1.4). To 

determine h, and go we obtain a system of edge effect equations 

ho’ + liz~o’ + 8,670 = 0, ET”” - goho - Ooflo - + go = 0, {b, go}, 3 0 (6. I) 
with boundary conditions corresponding to (1.2) 

1) h, (0) = -q&-‘7 g,’ (0) = 0, 

2) h, (0) = --‘p&30-‘, g, (0) = -20, 

3) h,’ (0) = 0, g,’ (0) = o> 4) h,’ (0) = 0, g, (0) = -20, (6.2) 

The subsequent terms of the asymptotics are determined exactly as in Sect. 2. Solving 

the problem (6. l), (6.2) by the method in Sect. 3, and using reasoning analogous to 

Sect.4, we arrive at the following result. 

Let cp (r) 8-l (r) b e a sufficiently smooth function for 0 < r < 1. Then for suffi- 
ciently smooth thin shells, the value of the lower critical load P,,, is determined by 

the formula 

P *11 = 2 [ P*n (g) WE = PCS iI $ blnE + . . .] 
. 

Ii 

PI = - 0.39b5, p2 = - O.O5i, p, = - 2, p4 = 2.58AO-3 

The subscripts II = 1, 2, 3, 4 correspond to the boundary conditions 1 - 4 in (1.2). 
Here the lower critical load is defined as the least value o* z 2~f~, (1) at which a 

continuous unique branch of the solution u (r, (T) and ZJ (r, o) corresponding to the 
mirror buckled equilibrium mode exists. Let us note that this definition is not complet- 
ely rigorous since there is no proof of the fact that o* is the value of the least load per- 

ceivable by the shell [l]. 
Therefore, in the first three edge support cases the value of the lower critical load is 

negative, and only in the case of absolutely clamped edge it is positive. In the case of 
a hinge supported edge (boundary conditions 1 and 3 in (1.2) ), this fact has a rigorous 
mathematical foundation [ 17, 211. 

The author is grateful to I. I. Vorovich, V.I. Iudovich and M. Iu. Zhukov for aid in the 
research. 
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The problem of an optimal, from the weight viewpoint, thickness distribution 
law along the length of a cylindrical shell loadod by axisymmetric external 
pressure is examined when collapse occurs because of buckling. The appara- 

tus of the generalized maximum principle is used for the solution [l]. 

1. The problem is formulated in the terminology of the theory of optimal processes. 
The state of the shell during loading is given by the phase coordinates Cpj (i = I$, . . . , 
6) at each instant a, where CZ is the dimensionless length coordinate. A change in the 

phase coordinates, as u changes, corresponds to shell motion. This process can be con- 
trolled by changing the shell thickness 6 (a). The highest derivative 6” (a) p] in the 

motion (stability) equation is taken as the control function, and the functions 6 (a), . . . . 
on-l (a) as the phase coordinates. The problem is to seek a function 6 (a) satisfying 

the stability equations, as well as boundary conditions and constraints, such that the mi- 

nimum of the quantity 1, 1 R 

J= 5 6(a)& 
0 

would be achieved. Here R and L are the shell radius and length, respectively. 
Constraints are imposed from structural or engineering considerations, as well as from 

the strength condition 6 (a) > i)min and the additional condition associated with the 
selected model of shell analysis 6” (a) < a . An optimal shell is sought in the class 
of admissible shells, which can be computed by using the Kirchhoff-Love hypothesis. 

Hence, the stability equations of classical shell theory are taken as the trajectory equa- 
tions, and a constraint from the condition [3] 

1 d6 (CI) ( %I,, 
-z---z-’ H (1.1) 


